Re-exam Mathematical Physics 2018, Prof. Dr. G. Palasantzas

10 points free
Total points to obtain 100

Problem 1 (15 points)

Consider the series: $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n \sqrt{n}} X^{n}$; For which values of x is the series convergent?

Problem 2 (15 points) Find the value of c if

$$
\sum_{n=2}^{\infty}(1+c)^{-n}=2
$$

Problem 3 (15 points) If a, b, and c are all positive constants and $y(x)$ is a solution of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, show that $\lim _{x \rightarrow \infty} y(x)=0$.

Problem 4 (10 points)
(a: 5 points)
(b: 5 points)

Let L be a nonzero real number.
(a) Show that the boundary-value problem $y^{\prime \prime}+\lambda y=0$, $y(0)=0, y(L)=0$ has only the trivial solution $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) For the case $\lambda>0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.

Problem 5 (15 points) Assume a function $f(x)$ to have Fourier Transform: $F(k)=\int_{-\infty}^{+\infty} f(x) e^{-i 2 \pi k x} d x$ Consider also the Fourier Transform definition of the Dirac Delta function: $\delta(k)=\int_{-\infty}^{+\infty} e^{-i 2 \pi k x} d x$
Derive the Fourier Transform of : (a: 5 points) $f(x)=\cos \left[4 \pi k_{o} x\right],\left(\mathrm{b}: 10\right.$ points) $f(x)=\cos ^{2}\left[4 \pi k_{o} x\right]$

Problem 6 (20 points)

Consider the boundary value problem for the one-dimensional heat equation for a bar with the zero-temperature ends:
$\begin{array}{ll}\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad u=u(x, t), \quad t>0,0<x<L, & (\underline{\text { a: } 10 \text { points) Show that the general solution }} \\ u(x, 0)=f(x), & \text { for } u(x, t) \text { is given by: } \\ u(0, t)=0, \quad u(L, t)=0, \quad t \geq 0 . & u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\lambda_{n}^{2} t} \sin \frac{n \pi}{L} x, \lambda_{n}=\frac{c n \pi}{L} \\ u(x, t): \text { Temperature } & \end{array}$
(b: 10 points) Derive the solution $u(x, t)$ for the case $f(x)=20 \sin (\pi x / L)+50 \sin (3 \pi x / L)$

Problem 1

If $a_{n}=\frac{(-3)^{n} x^{n}}{n^{3 / 2}}$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-3)^{n+1} x^{n+1}}{(n+1)^{3 / 2}} \cdot \frac{n^{3 / 2}}{(-3)^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|-3 x\left(\frac{n}{n+1}\right)^{3 / 2}\right|=3|x| \lim _{n \rightarrow \infty}\left(\frac{1}{1+1 / n}\right)^{3 / 2} \\
& =3|x|(1)=3|x|
\end{aligned}
$$

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n \sqrt{n}} x^{n}$ converges when $3|x|<1 \quad \Leftrightarrow|x|<\frac{1}{3}$, so $R=\frac{1}{3}$. When $x=\frac{1}{3}$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}$ converges by the Alternating Series Test. When $x=-\frac{1}{3}$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is a convergent p-series
$\left(p=\frac{3}{2}>1\right)$. Thus, the interval of convergence is $\left[-\frac{1}{3}, \frac{1}{3}\right]$.

Problem 2

$\sum_{n=2}^{\infty}(1+c)^{-n}$ is a geometric series with $a=(1+c)^{-2}$ and $r=(1+c)^{-1}$, so the series converges when $\left|(1+c)^{-1}\right|<1 \Leftrightarrow|1+c|>1 \Leftrightarrow 1+c>1$ or $1+c<-1 \Leftrightarrow c>0$ or $c<-2$. We calculate the sum of the series and set it equal to $2: \frac{(1+c)^{-2}}{1-(1+c)^{-1}}=2 \Leftrightarrow\left(\frac{1}{1+c}\right)^{2}=2-2\left(\frac{1}{1+c}\right) \Leftrightarrow 1=2(1+c)^{2}-2(1+c) \Leftrightarrow$ $2 c^{2}+2 c-1=0 \Leftrightarrow c=\frac{-2 \pm \sqrt{12}}{4}=\frac{ \pm \sqrt{3}-1}{2}$. However, the negative root is inadmissible because $-2<\frac{-\sqrt{3}-1}{2}<0$. So $c=\frac{\sqrt{3}-1}{2}$.

Problem 3

The auxiliary equation is $a r^{2}+b r+c=0$.
If $b^{2}-4 a c>0$, then any solution is of the form
$y(x)=c_{1} e^{r_{1} x^{x}}+c_{2} e^{r_{2} x}$ where $r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
But a, b, and c are all positive so both r_{1} and r_{2} are negative and $y(x)=0$
Here $r 1<0$ is negative because $-b-\left(b^{2}-4 a c\right)^{1 / 2}<0$ and $a>0 ; r 2<0$ because $b>\left(b^{2}-4 a c\right)^{1 / 2}$ or $b^{2}>b^{2}-4 a c$ because $a c>0$ and $a>0$
If $b^{2}-4 a c=0$, then any solution is of the form
$y(x)=c_{1} e^{r x}+c_{2} x e^{r x}$ where $r=-b /(2 a)<0$ since a, b are positive. Hence $y(x)=0$.
if $b^{2}-4 a c<0$
inen any sorution is of the form $y(x)=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)$ where $\alpha=-b /(2 a)<0$ since a and b are positive. Thus $y(x)=0$.

Problem 4

(a) Case $1(\lambda=0): y^{\prime \prime}+\lambda y=0 \Rightarrow y^{\prime \prime}=0$ which has an auxiliary equation $r^{2}=0 \Rightarrow r=0 \Rightarrow y=c_{1}+c_{2} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} L \Rightarrow c_{1}=c_{2}=0$. Thus $y=0$. Case $2(\lambda<0): y^{\prime \prime}+\lambda y=0$ has auxiliary equation $r^{2}=-\lambda \Rightarrow r= \pm \sqrt{-\lambda}$ [distinct and real since $\lambda<0$] \Rightarrow $y=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$ where $y(0)=0$ and $y(L)=0$. Thus $0=y(0)=c_{1}+c_{2}$ (*) and $0=y(L)=c_{1} e^{\sqrt{-\lambda} L}+c_{2} e^{-\sqrt{-\lambda} L}(\dagger)$.
Multiplying (*) by $e^{\sqrt{-\lambda} L}$ and subtracting (\dagger) gives $c_{2}\left(e^{\sqrt{-\lambda L}}-e^{-\sqrt{-\lambda} L}\right)=0 \Rightarrow c_{2}=0$ and thus $c_{1}=0$ from (*).
Thus $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(b) $y^{\prime \prime}+\lambda y=0$ has an auxiliary equation $r^{2}+\lambda=0 \Rightarrow r= \pm i \sqrt{\lambda} \Rightarrow y=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$ where $y(0)=0$ and $y(L)=0$. Thus, $0=y(0)=c_{1}$ and $0=y(L)=c_{2} \sin \sqrt{\lambda} L$ since $c_{1}=0$. Since we cannot have a trivial solution, $c_{2} \neq 0$ and thus $\sin \sqrt{\lambda} L=0 \Rightarrow \sqrt{\lambda} L=n \pi$ where n is an integer $\Rightarrow \lambda=n^{2} \pi^{2} / L^{2}$ and $y=c_{2} \sin (n \pi x / L)$ where n is an integer.

Problem 5

(a) Here you can substitute directly to calculate the Fourier transform, so you have

$$
F(k)=\frac{1}{2}\left[\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k-2 k_{0}\right) x} d x+\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k+2 k_{o}\right) x} d x\right]=\frac{1}{2}\left\{\delta\left(k-2 k_{o}\right)+\delta\left(k+2 k_{o}\right)\right\}
$$

(b) Here you can substitute directly to calculate the Fourier transform, so you have

$$
F(k)=\frac{1}{4}\left[\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k-4 k_{o}\right) x} d x+\int_{-\infty}^{+\infty} e^{-i 2 \pi\left(k+4 k_{o}\right) x} d x+2 \int_{-\infty}^{+\infty} e^{-i 2 \pi x} d x\right]=\frac{1}{4}\left\{\delta\left(k-4 k_{o}\right)+\delta\left(k+4 k_{o}\right)+2 \delta(k)\right\}
$$

The solution is determined by the separation of variables (the Fourier method):

$$
u(x, t)=F(x) G(t)
$$

Then

$$
\frac{\partial u}{\partial t}=F G^{\prime}, \quad \frac{\partial^{2} u}{\partial x^{2}}=F^{\prime \prime} G
$$

Substituting this into one-dimensional heat equation and separating variables,

$$
\begin{gathered}
F G^{\prime}=c^{2} F^{\prime \prime} G \\
\frac{G^{\prime}}{c^{2} G}=\frac{F^{\prime \prime}}{F}=\text { const }=-p^{2}
\end{gathered}
$$

we obtain the differential equations for $G(t)$ and $F(x)$

$$
\begin{gathered}
G^{\prime}+c^{2} p^{2} G=0 \\
F^{\prime \prime}+p^{2} F=0
\end{gathered}
$$

Satisfy the boundary conditions:

$$
u(0, t)=F(0) G(t)=0, \quad u(L, t)=F(L) G(t)=0, \quad t \geq 0
$$

Thus,

$$
F(0)=0, \quad F(L)=0
$$

The general solution for F is

$$
F=A \cos p x+B \sin p x .
$$

and

$$
F(0)=0: \quad A=0 ; \quad F(L)=0: \quad B \sin p L=0
$$

which yields

$$
\begin{gathered}
\sin p L=0 \quad(B \neq 0) \\
p L=n \pi, \quad p=p_{n}=\frac{n \pi}{L} \quad(n=1,2, \ldots) . \\
F=F_{n}=\sin p_{n} x=\sin \frac{n \pi}{L} x \quad(n=1,2, \ldots) .
\end{gathered}
$$

The equation for G becomes

$$
G^{\prime}+\lambda_{n}^{2} G=0, \quad \lambda_{n}=\frac{c n \pi}{L} .
$$

The general solution of this equation is

$$
G(t)=G_{n}(t)=B_{n} e^{-\lambda_{n}^{2} t} \quad(n=1,2, \ldots) .
$$

Hence the solutions of

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L
$$

satisfying

$$
u(0, t)=0, \quad u(L, t)=0, \quad t \geq 0
$$

are

$$
u_{n}(x, t)=F_{n}(x) G_{n}(t)=B_{n} e^{-\lambda_{n}^{2} t} \sin \frac{n \pi}{L} x \quad(n=1,2, \ldots) .
$$

These functions are called eigenfunctions and

$$
\lambda_{n}=\frac{c n \pi}{L}
$$

are called eigenvalues.
Now we can solve the entire problem by setting

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\lambda_{n}^{2} t} \sin \frac{n \pi}{L} x .
$$

Satisfy the initial conditions:

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x=f(x) .
$$

Thus,

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x, \quad n=1,2, \ldots
$$

(b) Satisfy the initial conditions:

$$
U(x, 0)=20 \sin (\pi x / I)+50 \sin (3 \pi x / L)
$$

Only the terms $\lambda_{1}=c \pi / L$ and $\lambda_{3}=3 \mathrm{c} \pi / \mathrm{L}$ give non-zero contribution to the series solution with $\mathrm{B}_{1}=20$ and $\mathrm{B}_{3}=50$

So the solution is:
$\mathrm{U}(\mathrm{x}, \mathrm{t})=20 \exp \left[-\lambda_{1}{ }^{2} \mathrm{t}\right] \sin (\pi \mathrm{x} / \mathrm{L})+50 \exp \left[-\lambda_{3}{ }^{2} \mathrm{t}\right] \sin (3 \pi \mathrm{x} / \mathrm{L})$

